NIST SP 800-63, *Electronic Authentication Guideline* and Biometrics

Mar. 30, 2005

Bill Burr william.burr@nist.gov

Authentication Policy and Guidance

OMB M0404 Policy Guidance for e-authentication

- Agencies classify electronic transactions into 4 levels needed authentication assurance according to the potential consequences of an authentication error
 - Consider: privacy, inconvenience, damage to reputation, harm to agencies and programs, financial liability, crime, safety

NIST SP 800-63: Technical authentication Framework for remote eauthentication

- —http://csrc.nist.gov/publications/nistpubs/index.html
- —Establishes technical requirements for 4 levels of M0404 for
 - Identity proofing requirements
 - Authentication protocols and mechanisms based on secrets

Homeland Security Presidential Directive 12

- FIPS 201 will deal with local and remote authentication credentials for Federal employees and contractors
- —Short schedule: 6 months for NIST from August 2004

Max. Potential Impacts Profiles

Potential Impact Categories for Authentication Errors	Assurance Level Impact Profiles			
	1	2	3	4
Inconvenience, distress, reputation	Low	Mod	Mod	High
Financial loss or agency liability	Low	Mod	Mod	High
Harm to agency prog. or pub. interests	N/A	Low	Mod	High
Unauth. release of sensitive info	N/A	Low	Mod	High
Personal safety	N/A	N/A	Low	Mod High
Civil or criminal violations	N/A	Low	Mod	High

Authentication: Local vs Remote

Local authentication

- —Verifier control and supervision is comparatively easy
 - Verifier controls entire authentication system
 - Claimant may be supervised (to various degrees) or unsupervised
 - Verifier knows just where claimant physically is

Remote authentication

- —Verifier control and supervision is harder
 - Claimant generally uses his own system, controls his own software
 - Claimant is generally unsupervised
 - Network access: verifier knows only that claimant has network access
 - Hardware tokens improve supervision and extend verifier control
- NIST SP 800-63 applies to remote authentication methods using secrets
- FIPS 201applies to Federal Personal Identity Verification card for both physical and logical access

Authentication Factors

Something you know

Typically some kind of password

Something you have

- For local authentication typically an ID card
- For remote authentication typically a cryptographic key
 - "hard" & "soft" tokens

Something you are

- A biometric
 - Unattended capture is problematic Capture can deter fraud even if not checked in authentication process
- The more factors, the stronger the authentication

Remote Authentication Protocols

- Conventional, secure, remote authentication protocols all depend on proving possession of some secret "token"
 - May result in a shared cryptographic session key, even if token is a password
- Remote authentication protocols assume that you can keep a secret
 - Private key, Symmetric key or Password
- Can be "secure" against defined attacks if you keep the secret
 - Work required for attack can be calculated or estimated
 - Make the amount of work impractical
 - People can't remember passwords strong enough to make "offline attacks" impractical
 - Good password remote authentication blocks eavesdropper attacks
 - Harder to prevent shoulder surfing or phishing

Attacks

- Eavesdropper listens in
- Decoy sites, access points and terminals,
 - Impersonate a real site and either facilitate a man-in-the-middle attack or capture password tokens
 - Facilitated by browser limitations and ability of websites to control the user's screen appearance
 - Phishing brings victim to the decoy
- Man-in-the-middle communications go through the attacker
 - Can yield attacker some tokens, allow attacker to eavesdrop, or can allow session hijacking
- Social Engineering attacker persuades user to do something insecure
 - Probably no remote authentication method is entirely immune to this
- Malware & intrusion bad software introduced on claimant' computer
 - Copied token: some tokens are easy to copy and the user will never know

Four technology levels of 800-63

- Level 1 (little confidence in asserted identity)
 - —No identity proofing
 - —Relatively weak passwords allowed; may be vulnerable to eavesdroppers
- Level 2 (some confidence in asserted identity)
 - —Better passwords, but
 - Single factor & still vulnerable to phishing, social engineering, etc.
- Level 3 (high confidence in asserted identity)
 - —Two factors, eg. password + soft crypto token or one-time password device
 - Phishing attacks shouldn't get master auth. secret
- Level 4 (very high confidence in asserted identity)
 - —In person ID proofing
 - —Hard crypto tokens required something you tangibly have
 - Crypto binding of authentication and data transfer

Soft Tokens

- Key, typically encrypted using a key derived from a password
 - 2 factors, more or less
 - Symmetric or asymmetric key
- Protects against many attacks
 - eavesdroppers
 - Man-in-the-middle
- Key itself is vulnerable to malware and intrusion attacks
 - Very easy to copy encrypted key, and an off-line password dictionary attack on the token will very often succeed

One-time Password Devices

- FIPS 140-1 crypto module
 - —Minimum FIPS 140 level 1
- For 800-63 level 3 must involve a user memorized password
- Symmetric key devices
- Generate "One time Passwords" from nonce and symmetric key
 - —Password is manually entered into server like any other password
 - —Works with any ordinary browser both a virtue and a fault
- Vulnerable to MITM attacks
 - Largely because of browser limitations
 - —But never loose the key in an MITM attack
- Physical device, something you really have and know you have
 - —Very hard to copy

Hard Tokens

- For 800-63 a FIPS 140 validated hardware crypto token
 - FIPS 140 Level 2 with level 3 physical security needed for SP 800-63 level 4
 - Requires PIN or biometrics authentication to activate the token
- All the desirable security properties of Soft Tokens plus
 - Physical device, something you really have and know you have
 - Very hard to copy
 - Better resistance to malware and intrusion attacks
 - Not invulnerable, but the attacker won't learn the key

FIPS 201 PIV Card

Graduated Assurance Levels for Identity Authentication

PIV Assurance Level	Applicable PIV Authentication Mechanism				
Required by Application/Resource	Physical Access	Logical Access	Logical Access		
(M-0404 level)		Local Workstation Environment	Remote/Netw ork System Environment		
SOME confidence (IvI 2)	VIS, CHUID	CHUID	PKI		
HIGH confidence (IvI 3)	BIO	BIO	PKI		
VERY HIGH confidence (Ivl 4)	BIO-A, PKI	BIO-A, PKI	PKI		

Multifactor Remote Authentication

- The more factors, the stronger the authentication
 - Two factors required for Level 3 by 800-63
- Multifactor remote authentication typically uses a crypto key
 - Key is protected by a password or a biometric
 - To activate the key or complete the authentication, you need to know the password, or possess the biometric
 - Works best when the key is held in a hardware device (a "hard token")
 - Ideally a biometric reader is built into the token, or a password is entered directly into token
- Are there other ways?
 - Not yet in 800-63

New ways to get to level 3?

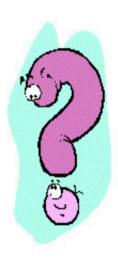
- Many possibilities; candidates for level 3:
 - "Bingo Cards"
 - Human readable card with cells identified by a row and a column
 - Cell contents randomly generated
 - Challenge is the row and column
 - Reply is cell contents
 - Cell phones as tokens
 - Enter one time authenticator sent to cell with an SMS message
 - Cell phone authentication itself isn't quite FIPS strength crypto
 - Use "fingerprint" of personal computer
 - Involve Java script and cookies
 - Also use personal image to authenticate website to user
 - Biometrics too??
- Any of these easily combined with password for second factor
- Can have pretty good entropy

Biometrics

- Biometrics tie an identity to a human body
- Biometric authentication depends on being having a fresh, true biometric capture, not on keeping the biometric secret
 - Easy when the person is standing in front of you at the capture device
 - Harder if all you have is bits from anywhere on the internet
- Biometrics aren't suitable secrets for remote authentication
 - Hard to keep them secrets
 - Limited number per person and you can't change them
 - A feature, not a bug, it's why biometrics are so useful
 - Maybe you could revoke them, but would you like the process?

Culture Clash

- Current remote authentication methods are mainly cryptographic
- Cryptographers are adversarial
 - Propose a new crypto method and everybody tries to break it
 - Kerchoffs assumption: an adversary will know all the details of the design of your system (only secrets are operational keys)
- Cryptographers will develop an attack and publish it in enough detail so that others can replicate their work, and think they have done good
 - 5 hash algorithms including MD5 publicly broken at crypto 2004
 - Fluhrer/Shamir RC4 papers lead to WEPCrack & AirSnort "kiddie scripts"
 - We do this to crypto & we'll do it to biometrics authentication too
 - Cryptographers believe that a dental technician has the skills and materials to construct a copy of a fingerprint that will fool most fingerprint readers
- Can biometrics stand up to this kind of public, sustained attack?
 - If they can, what about personal privacy how much do we impact it?"



Some Workshop Issues

- We have the model of building a biometric reader into a personal cryptographic token to unlock the user's key in 800-63 now
 - How else can we get strong remote authentication with biometrics?
- What are acceptable false acceptance rates and how can we measure them?
- Can we get Level 2 with only a biometric factor?
 - Can we get to 2⁻¹⁴ false acceptance rates?
- Can we combine a password and a biometric to get to Level 3?
- For crypto tokens we have FIPS 140 validation testing: how do we get the biometric equivalent?
- How can a remote verifier know it has a fresh "real" biometric?
 - Not an old copy of a biometric and not something synthesized
- What are the privacy implications of large biometric databases?
- What is the process for working on this?

Questions

